See Enterprise GenAI Outlook 2025 Survey Results
Blog: image 1

How Implementing Data Cleaning Can Boost AI Model Accuracy

The quality of your data can make or break your business decisions. Data cleaning, the process of detecting and correcting inaccuracies and inconsistencies in data, is essential for maintaining high-quality datasets. Clean data not only enhances the reliability of your analytics and business...

Read More
Blog: image 2

Supervised and Unsupervised Machine Learning: How to Choose the Right Approach

The two primary approaches to machine learning are supervised and unsupervised learning. Understanding their differences and applications is important in order to leverage the right technique to solve your specific problems and drive valuable insights. In this guide, we delve into the...

Read More
Blog: image 3

Fairness Metrics in AI: Your Step-by-Step Guide to Equitable Systems

Fairness metrics are quantitative measures used to assess and mitigate bias in machine learning models. They help identify and quantify unfair treatment or discrimination against certain groups or individuals. As AI systems grow in influence, so does the risk of perpetuating or amplifying biases...

Read More
Midjourney depiction of types of attention mechnisms

9 AI Implementation Pitfalls That Can Cripple Any Project

Successful AI projects require more than just cutting-edge technology. They demand a clear vision, robust data governance, ethical considerations, and an adaptive organizational culture. In this article, we delve into the common pitfalls that can derail AI projects. We also offer insights and...

Read More
Blog: image 4

Exposing the Limitations of Azure Groundedness Service in Detecting Hallucinations

Hallucinations and ungrounded results are a significant challenge in Content Processing systems. When AI-generated content contains statements that are inconsistent with the input data or knowledge base, it can lead to the spread of misinformation and erode trust in the system. Microsoft Azure’s...

Read More
Blog: image 5

10 AI Output Review Best Practices for Subject Matter Experts

Subject Matter Experts (SMEs) are the architects of quality and precision in AI development. But how can you be the best SME for your organization’s AI output review initiatives? SMEs are presented with a great responsibility – to identify discrepancies, biases, and areas for potential...

Read More
Blog: image 6

10-Step RAG System Audit to Eradicate Bias and Toxicity

As the use of Retrieval-Augmented Generation (RAG) systems becomes more common in countless industries, ensuring their performance and fairness has become more critical than ever. RAG systems, which enhance content generation by integrating retrieval mechanisms, are powerful tools to improve...

Read More
Blog: image 7

Prevent Costly GenAI Errors with Rigorous Output Evaluation — Here’s How

Output evaluation is the process through which the functionality and efficiency of AI-generated responses are rigorously assessed against a set of predefined criteria. It ensures that AI systems are not only technically proficient but also tailored to meet the nuanced demands of specific...

Read More
Blog: image 8

Mannequin Medicine Makes Perfect, OpenAI’s Shifting Priorities, Google Search Goes Generative

AI Weekly Breakthroughs | Issue 11 | May 22, 2024 Welcome to AI Weekly Breakthroughs, a roundup of the news, technologies, and companies changing the way we work and live. Mannequin Medicine Makes Perfect Darlington College has introduced AI-powered mannequins to train its health and social care...

Read More
Blog: image 9

How GenAI Transforms Every Aspect of Data Consumption and Interaction

From the Library of Alexandria to the first digital databases, the quest to organize and utilize information has been a reflection of human progress. As the volume of global data soars—from 2 zettabytes in 2010 to an anticipated 181 zettabytes by the end of 2024 – we stand on the verge of a new...

Read More
Blog: image 10

Why RAG Systems Struggle with Acronyms – And How to Fix It

Acronyms allow us to compact a wealth of information into a few letters. The goal of such a linguistic shortcut is obvious – quicker and more efficient communication, saving time and reducing complexity in both spoken and written language. But it comes at a price – due to their condensed nature...

Read More
Blog: image 11

10 Ways Duplicate Content Can Cause Errors in RAG Systems

Effective data management is crucial for the optimal performance of Retrieval-Augmented Generation (RAG) models. Duplicate content can significantly impact the accuracy and efficiency of these systems, leading to errors in response to user queries. Understanding the repercussions of duplicate...

Read More
Get Demo