Microsoft Copilot is changing the game for teams looking to get more out of their data. But to really see its full potential, your data needs to be prepared thoughtfully—organized, clean, and secure. Without the right groundwork, you’re setting yourself up for spotty insights, unreliable...
Getting your SharePoint data AI-ready isn’t just about flipping a switch. It’s about taking a closer look at the data you already have and setting it up for success. Whether you’re aiming to streamline workflows, unlock actionable insights, boost the user experience, or simply make better use of...
Microsoft Copilot is a powerful tool, but like any AI, it can provide incorrect or misleading answers. To ensure you’re getting the most accurate responses, it’s essential to understand how to prompt Copilot properly in order to prevent bad outputs. Let’s explore how Microsoft...
In a world where users expect fast, accurate answers, knowledge base AI chatbots offer an efficient solution. By integrating artificial intelligence with your existing content source, these chatbots help users find information instantly, minimizing the need for human support. This guide will...
AI knowledge bases are changing the way organizations manage and access information. These AI-powered systems can understand user intent and deliver faster, more accurate results while learning and improving over time. In this guide, we’ll explore how AI knowledge bases work, their key...
A knowledge graph is a structure that connects diverse pieces of information, helping you uncover relationships and insights that might not be immediately apparent. In some cases, you need to bridge two types of data together: structured and unstructured data. In this article, we provide a clear,...
What is Retrieval-Augmented Generation? Retrieval-Augmented Generation (RAG) is a Generative AI (GenAI) implementation technique that is accelerating the adoption of GenAI and Large Language Models (LLMs) across enterprise environments. By enabling organizations to use their proprietary data in...
When it comes to data quality, unstructured data is a challenge. It often lacks the consistency and organization needed for effective analysis. This creates a pressing need to address data quality issues that can hinder your ability to leverage this data for decision-making and innovation. As you...
Historically, we never cared much about unstructured data. While many organizations captured it, few managed it well or took steps to ensure its quality. Any process used to catalog or analyze unstructured data required too much cumbersome human interaction to be useful (except in rare...
From the Library of Alexandria to the first digital databases, the quest to organize and utilize information has been a reflection of human progress. As the volume of global data soars—from 2 zettabytes in 2010 to an anticipated 181 zettabytes by the end of 2024 – we stand on the verge of a new...
Large language models analyze datasets to derive patterns and rules as a method of learning and replicating human intelligence. As you can probably guess, the dataset used in a model can dramatically alter its understanding. We’ve used a number of analogies to explain the significance of this, but it boils down to the same principle: the inputs in LLMs greatly influence the outputs.